A History of
R.G. LeTourneau’s Earliest Scrapers:
Culminating in the 1922 Mountain Mover

John H. Niemelä, Ph.D.
Research Assistant: Dale Hardy

Commemorating
the November 29, 2004,
Designation by the A.S.M.E.
of R.G. LeTourneau’s Mountain Mover
at LeTourneau University, Longview, TX
as a Historic Mechanical Engineering Landmark

November 29, 2004
Version 1.1B (October 31, 2007)
© All Rights Reserved

1 This is the most recent revision of a paper submitted to the American Society of Mechanical Engineers: “Nomination of R.G. LeTourneau’s Mountain Mover for ASME Historic Mechanical Engineering Landmark.” Four minor revisions have preceded this one: 1.01, 1.02, 1.03, and 1.04. The first major revision was 1.1A. This is a minor revision. The next minor one would be 1.1C. The next major revision would be 1.2A.

* signifies that reference materials cited within a footnote contain pertinent pictures.
A PERSONAL INTRODUCTION

The present author’s interest in R.G. LeTourneau is long-standing. My father, George Niemelä, Sr., was a mechanic, welder, heavy-equipment operator, and businessman in northern California. When the author was a boy, Dad worked for R.G.’s brothers-in-law (Howard and Buster Peterson) at Peterson Tractor, a Caterpillar dealership based in San Leandro, CA. He was a machinist/welder in the first crew of Peterson’s Roller Exchange Shop. In 1961 Dad opened an equipment rental yard in Stockton, CA (Bee Wise Tool and Equipment Rental). His business was two blocks from a Montgomery-Ward warehouse that once was R.G.’s second Stockton factory (built in 1930, expanded in 1934). Once, Dad heard R.G. speak at San Francisco’s Cow Palace and met him. A few months later he believed Christ’s free offer of eternal life to him.

Dad and I enjoyed all aspects of heavy equipment together: operating, repairing, designing, improving, and considering the history of construction equipment. Despite knowing LeTourneau’s contribution to equipment, “religious” books like Mover of Men and Mountains were at the bottom of my list. Finally, in 1972 I read and reread the book. It convinced me that R.G. enjoyed life—not in spite of being a Christian—but because Christ’s free gift of eternal life to every believer can motivate a life of gratitude. As R.G. often said, “I am just a mechanic whom the Lord blessed.” The Lord blessed him with eternal life as a gift. Subsequently, R.G. also found God’s purpose for his life. R.G.’s book sparked in me a new interest in the Bible.

My life’s work (teaching the Bible) combines two passions: researching original-language texts of the Bible and explaining texts. Fond memories remain for me of growing up on the seat of a tractor in the land where R.G. revolutionized earthmoving. For over thirty years my hobby has been to find and analyze historical documents concerning LeTourneau’s California years.

AN OVERVIEW OF THIS PAPER

The author plans to write a history of LeTourneau’s California years (up to the 1948 sale of the Stockton factory). The present paper considers R.G.’s entry into a new field: designing tractor-drawn scrapers. The field itself was new, because the first scraper that required a tractor (not horses) only preceded the Mountain Mover by seven years. R.G. was not tradition-bound, so even his first machines were radical departures from all others. His early machines constitute an important chapter in any history of LeTourneau’s California years (or of his entire career).

We both have a great debt to R.G. himself. In addition, his family and the University have been most helpful. We also wish to express appreciation to everyone cited in the bibliography. We are indebted to those whose writings preceded our own and to libraries that have preserved primary evidence. Our research on this topic has continued for thirty-six years, but our quest for primary evidence must continue. Others (some of whom have never gone into print) certainly have insights or evidence which may require adjusting some of our conclusions. Open scholarship benefits if every writer documents his evidence for others to evaluate, so we welcome comments and corrections. Please contact us through our website: www.mol316.org.

MOUNTAIN MOVER TIMELINE

1919 (early summer): R.G.’s first experience operating a Holt 75 with a Holt leveler.
1920: Convert two-man Schmeiser drag scraper behind Holt 75 to one-man electric control.
1921: Convert two-man Holt leveler behind Holt 75 to one-man electric control.
1921 (after May): Built one-man electric controlled full-drag scraper at Moss Avenue.
1922 (Spring): Built the Gondola, the first large semi-drag scraper operated by one man.
1922 (mid-June): Built the Mountain Mover, a telescoping-bowl semi-drag scraper.
1922 (July 13): Application (for patent 1,512,614) reached the U.S. Patent Office.
1922 (July 15): Stockton Record photo of Gondola working at San Joaquin County Fair.
1922 (September 27): Application (for patent 1,470,853) reached the U.S. Patent Office.
1922–26: Ephraim Hahn operated the Mountain-Mover as R.G.’s employee.
1926: Andrew Maestretti bought the Mountain Mover and quickly sold it to Eph Hahn.
(1926–44): Disc wheels replaced Mountain Mover’s spoked front-wheels.
1943: Eph Hahn sold the Mountain Mover to his brother, Clarence.
1944: Clarence Hahn interview and current pictures of Mountain Mover appeared in NOW.
(1944–60): Height of the Mountain Mover was reduced to enable transport under low bridges.
(1944–60): Telescopic feature disabled (due to D8’s power), possibly when height reduced.
(1944–60): Hitch converted to gooseneck style for improving maneuverability.
(1944–60): Provision for removable transport dolly attached to Mountain Mover.
Early 1950s: Eph Hahn’s son, Harold, bought the Mountain Mover, when Clarence retired.
Latter 1950s: Harold Hahn entered plumbing, basically idling the Mountain Mover.
1959–60: Mountain Mover photographed for NOW and Mover of Men and Mountains.
1967: R.G. and Harold Hahn photographed with Mountain Mover near Manteca, CA.
1969 (June 1): Robert Gilmour LeTourneau died in Longview, Texas.
1974 (September): Mountain Mover dismantled and moved from California to Longview, TX.
1974–75: The Mountain Mover restored at LeTourneau University’s ATP Building.
1975 (or early 1976): Mountain Mover placed in front of the Margaret Estes Library.

4* The ATP Building (no longer there) was near the southeast corner of campus. Four pictures show the sections of the Mountain Mover’s frame in Longview. “[Mountain Mover in Pieces near ATP Building],” four pictures: A–D, [about 1975]. Also, “[Mountain Mover at University],” shows its scraper bowl.
5* The scrapers went in front of the Margaret Estes Library. “Campus Map,” LeTourneau University, has a “13,” designating the “Jeanette S. Belcher Memorial Tower/Belcher Mall,” where the machines were located after February 1976. Able, “Dirt Mover Located,” 3-A, says about the pictured Mountain Mover, “The scrapers [the 1922 Mountain Mover and the 1927 Gondola] . . . will soon be on permanent display on the college campus.” “Although no specific site for their retirement has been selected, Dr. Joe Winniger, LeTourneau College spokesman, said of the old, ‘They are here to stay.’” For more than ten years the scrapers rested near Estes Library.
The Latest Possible Date for Building the Mountain Mover. Fabrication occurred rather informally, because R.G. drew no blueprints first.7 The earliest known drawings of the Mountain Mover were part of his application for U.S. patent 1,512,614. The office of attorney Percy Webster produced the patent drawings. The drawings left Stockton, CA, and reached the Patent Office in Washington DC on July 13th, 1922. This yields the following as the expected sequence:

1. R.G. built the Mountain Mover.
2. He secured the services of Percy Webster to submit a patent application.
3. Percy Webster’s office produced patent drawings and drafted the application.
4. Percy Webster’s office sent a copy to R.G. for approval and signature.
5. The postal service brought the signed application to the patent office (in four days?).

Thus, completion of the Mountain Mover cannot be later than the latter half of June 1922. This is several months earlier than the date given in R.G.’s autobiography (in which he dates the Gondola in July 1922).8 A chronology would to date the Mountain Mover in mid-June 1922, with the Gondola being a few months earlier.

The Earliest Possible Date for Building the Mountain Mover. It is hard to pinpoint this, because the evidence is indirect. The appropriate starting point is with documented chronology.

1. Ira Guy won a grading contract for the San Joaquin County Fair on May 24, 1922.9
2. Work on the half-mile racetrack (part of Ira Guy’s contract) started in early June 1922 and ended in the latter part of July.10 R.G. used the Gondola on this job.11

If R.G. had fabricated the Mountain Mover before starting the racetrack, one would assume that he would have used it at the fair. He did not. If it were not yet completed, he necessarily would begin the job with the Gondola. The Mountain Mover was not part of that job.

7 R.G. LeTourneau, \textit{Mover of Men and Mountains} (Englewood Cliffs, NJ: Prentice-Hall, 1960; reprint, Chicago: Moody, 1967, 1973), 121, describes the design of another scraper built the same year, “We squatted down in the dust of the driveway and began to draw up some plans.” Another indication of the lack of early blueprints comes from \textit{Mover of Men and Mountains}, 37, “Mindful of the old German’s warning that an unfinished machine never works, I started construction on the [Gondola] scraper that night, not even delaying to draw up plans.”

8 \textit{Mover of Men and Mountains}, 123, dates its completion in July 1922, This paper posits an earlier date.

9 Two articles show that Ira Guy won a contract at the fair: (1) “High Bids Are Submitted for Fair Buildings,” \textit{Stockton Daily Evening Record} (May 23, 1922): 14, “Ira D. Gun [Guy] bid $3376.65 for grading for the horse barns.” (2) “$58,000 Contract Let for Work at Fair Grounds,” \textit{Stockton Daily Evening Record} (May 24, 1922): 4, “Ira D. Gray [sic, should be Guy] was awarded the $3376.65 contract for grading the ground on the site of the proposed horse barns.” Ira D. Guy was the bidder, even if the \textit{Record} misspells his name twice. Three factors show that this is Ira Guy: (1) Ira is not a common name, (2) misspelling the name twice argues for sloppy typesetting or for a reporter’s carelessness, (3) the man is a contractor with whom R.G. affiliated. \textit{Mover of Men and Mountains}, 92–132, uses Ira Guy’s name often, showing that they did associate at this time.

10 “This Year’s Fair Building Program Now Under Way,” \textit{Stockton Daily Evening Record} (July 15, 1922), 13, “Two Caterpillar tractors and a scraper have been at work since the first part of June building up the new half-mile track, and part of the time there have been three tractors on the job. It will be completed in another week.”

11 “Large Exhibits of Implements at County Fair,” \textit{Stockton Daily Evening Record} (August 26, 1922): 14. \textit{Stockton Daily Evening Record} (July 15, 1922), 13, shows the Gondola working on the race track.
Could the Mountain Mover predate the racetrack subcontract? Theoretically, yes. However, one would assume that R.G. would use it on the racetrack, if it already existed. Most likely, fabrication of the Mountain Mover did not precede the racetrack job. R.G. seems to have completed Mountain Mover in June 1922. Unless other evidence surfaces (requiring a May completion), it seems best to date it around the middle of June 1922.

Subsequent History of the Mountain Mover. Eph Hahn operated it for R.G. from 1922 to 1926, when Eph bought it. Eph’s brother Clarence bought it in 1943. The original spoked front-wheels failed sometime before 1944, so disc wheels replaced them. By then seven tractors had pulled the Mountain Mover. The seventh, a D-8, had sufficient power to allow disabling the bucket-telescoping mechanism. Sometime between 1944 and 1960, the Hahn family lowered its overall height (for transport under low bridges). They also replaced the original hitch with a gooseneck and added a removable transport-dolly. Clarence sold it around 1955 to Eph’s son Harold. Harold essentially retired the Mountain Mover by 1960.

12 “Grandpappy Never Quit,” NOW 9 (October 20, 1944), 4, “Ephraim Hahn was a born land leveler. He knew his tools and thought that the Mountain Mover was exactly AAA1. In fact, he thought so much of the Mountain Mover that in ’26 he bought it from R.G.” Harold Hahn, Ephraim’s son, in a telephone interview, February 8, 2004, indicated that for some reason, R.G. was hesitant to sell the Mountain Mover to Eph (maybe wanting to keep a good operator). R.G. sold it to Andrew Maestretti, from whom Ephraim soon bought it.

14* Cf. “Grandpappy Never Quit,” 4–5, which has a picture and caption mentioning the wheel replacement.

15 Ibid., 5.

16 “Harold Hahn interview,” February 8, 2004, said that the telescopic feature became unnecessary after buying a D-8. A Holt 75 with the Mountain Mover could move twice the load as with the Gondola. R.G. LeTourneau, Stockton, CA, Patent 1,470,853, United States Patent Office, “Scraper,” filed by Percy Webster, October 16, 1923, 1, states R.G.’s goal, “To use a tractor of size having reserve power sufficient to overcome the above noted dirt resistance when necessary necessitates an expenditure for such a machine which would not be warranted and would increase the cost of the land levelling [sic] operations to an excessive degree [emphasis mine].”

17* Cf. the 1944 pictures in “Grandpappy Never Quit,” 1, 4–5, against those of 1960. Cf. the picture on the second picture-page following Mover of Men and Mountains, 122. “Harold Hahn interview,” February 8, 2004, says that low bridges in the Manteca-Linden area (near Stockton) made transport difficult. Height was reduced to 11 feet.

18* The 1944 pictures in “Grandpappy Never Quit,” 1, 4–5, lack a gooseneck, but the one in “R.G. Retraces Steps of Early Days in Stockton, Calif.,” NOW 14 (December 15, 1960): [3], has a gooseneck hitch. Harold Hahn, “telephone interview,” by John Niemelä, February 8, 2004, dates the gooseneck at about the same time as lowering its height. The gooseneck improved maneuverability. “[Mountain Mover in Pieces near ATP Building: picture D],” shows the gooseneck in Longview, but it was never reattached.

19* Cf. the 1944 rear pictures of the Mountain Mover “Grandpappy Never Quit,” 1, 4–5; Gowenlock, The LeTourneau Archive, 68, with the 1994 picture in Gowenlock, LeTourneau Archive, 74; and “[Mountain Mover at University],” [1]. Recent pictures show two vertical channels (6” × 6”) braced by triangular plates. Harold Hahn, “telephone interview,” by Dale Hardy, February 10 and 17, 2004, said that a trucker, Harley Murray, moved it between jobs. He lifted the rear, attached a dolly, removed the front wheels, and hitched the gooseneck to a truck.

21* “R.G. Retraces Steps,” [3], “With Eph Hahn, an operator for him in the early days, R.G. examines the Mountain Mover that he built in 1922. This Scraper has been in use until a few years ago when Eph Hahn ceased land levelling [sic] contracting.” The presence of tall and dry grass around the Mountain Mover shows that it had not moved for quite a period of time.
but it occasionally moved dirt as late as 1967. In September 1974, it was dismantled and trucked to LeTourneau University. ATP Inc. started restoring it (on the LeTourneau University campus) that year, apparently finishing in late 1975. From 1976–89 the Mountain Mover was displayed in front of LeTourneau University’s Margaret Estes Library. On R.G.’s 101st birthday (November 30, 1989), it reached its final resting spot, near the graves of Robert and Evelyn LeTourneau. Finally, on November 29, 2004 (Founder’s Day), the eve of R.G.’s 116th birthday, the American Society of Mechanical Engineers designated the Mountain Mover a Historic Mechanical Engineering Landmark.

BACKGROUND INFORMATION

The 1922 Mountain Mover was a pioneering effort by R.G. The pioneering stage ended in 1928, when he built what he called the cable-controlled scraper. That design began his twenty-five year use of cable control. It also marks the beginning of an era of increasingly standardized LeTourneau scrapers. His pre-1928 machines evidence much higher levels of trial and error.

LeTourneau University owns two pre-1928 models (the 1922 Mountain Mover and a 1927 Gondola). Researchers have encountered no trouble identifying the Mountain Mover correctly, but the Gondola at LeTourneau University is another story.

The problem is that more than one of R.G.’s early designs went under the name Gondola. One of those designs (the 1922 Gondola) was a predecessor to the Mountain Mover; another (the 1927 Gondola) was a later development. In a nutshell, most people have assumed that the Gondola at the University is the 1922 machine, but it is actually a 1927 model. If it were the 1922 version, the oldest surviving LeTourneau scraper would be that Gondola. If it is a 1927 Gondola, then the Mountain Mover is the oldest LeTourneau scraper in existence.

It would be wonderful, if someone could ask R.G. to identify the machines at the University. However, he died in 1969, five years before these scrapers came to Texas. With no pronouncement about the Gondola, this paper must identify the Gondola. This issue requires resolution before considering the Mountain Mover’s contribution to the science of moving earth. The 1927 Gondola refines some principles learned from the Mountain Mover (not the reverse), so their sequence of manufacture is important.

23 “[Mountain Mover at University],” [1], dates the Mountain Mover’s arrival in Longview as September. That fall Roy and Ben LeTourneau sent a truck from Florida to California to retrieve the Mountain Mover. Two trips were necessary (“Harold Hahn telephone interview,” February 10, 2004, by Dale Hardy).
25 R.G. did not build a duplicate of any of his pre-1925 scraper. The 1925 version of the telescopic scraper was his first model with multiple copies. Kaiser bought rights to it in 1927 and built additional telescopics that year. Even so, it is the 1928 cable-controlled scraper that marks the point where different models started to resemble each other. That is, a tractor-mounted P.C.U. controlled them, they had an ejector, they had four-wheel mounting. 1928 marks the shift from prototypes that explore basic principles to multiple copies exemplifying refinements of those principles.
R.G.’s Philosophy of Scrapers

The year 1919 marks R.G.’s first encounter with scrapers. Interestingly, the same principles that concerned LeTourneau in 1919 remain foundational to this very day. Dan Heiple, an engineer who started his career with LeTourneau, wrote an article on scraper theory in 1957: “What Contractors Need to Know on Economics of Scraper Design and Loading.” Economical earthmoving requires cutting cycle-times and increasing payload. When R.G. started moving dirt, the Holt 75 was the most powerful tractor on California ranches, but it moved slowly. He could not buy a tractor with sufficient power that traveled faster. On the other hand, he could redesign the scraper to increase the yards of earth moved per hour. His earliest efforts paid dividends in both cycle-time and payload.

R.G. and the Holt Leveler

LeTourneau’s first scraper experience (1919) was with Abraham Grunauer’s Holt 75 crawler with a Holt leveler. Such wheel-supported full-drag scrapers were then common in California. One man operated the tractor and another ran the scraper, because no one thought that one man could control both. Holt Manufacturing Company of Stockton, CA, built a matched tractor and leveler. Such scrapers were small in relation to the tractor, but the heavy friction loads of a full-drag design kept a 23,000-pound Holt 75 from dragging more than three cubic yards (only 6,000 pounds payload). R.G. wanted to change this.

29* A full-drag scraper has a blade with side-wings. A dirt-carrying floor may be (1) minimal (under Schmeiser designs, cf. patent 1,150,459) or (2) absent (under Holt designs). Retaining a load to the discharge point requires dragging the cutting edge on the ground surface. (Cf. *Mover of Men and Mountains*, the first picture after p. 122). The scraper lacks a floor. Raising the cutting edge dumps a load. LeTourneau, “New Machine Dramatizes,” 1, says, “It [a Holt full-drag scraper] was known as a scraper because it was just a straight up and down blade with wings on each end, but no bottom in it. To let the dirt out, we just raised the blade like a bulldozer.”

Side-wings reduce load-losses past the cutting-edge’s ends. Importantly the tractor hitch and the scraper’s wheels support the cutting edge. Assume a setting in which the cutting edge barely contacts the dirt (not quite digging). Going over a bump raises the cutting edge, but less than the bump’s original height. Succeeding passes reduce its height.

30 R.G. LeTourneau, “R.G. Talks about the Joy of Accomplishment Makes Play out of Work.” *NOW* 17 (April 1963): [1–2], 221, “One evening I joined the gang and proposed my new scheme of putting an electric generator on the tractor[,] belted to the flywheel, and let the tractor operator kick a switch with his foot and one man could operate both the tractor and the scraper. But I couldn’t sell the idea at all. They said, ‘Oh, no, each man has his hands full. That won’t work.’” In note 39 R.G. claims that a good Holt-leveler operator must be a contortionist. Similarly, Leffingwell, *Caterpillar*, 57, hints at the problems faced in steering a Holt 75 (using steering clutches as well as a steering wheel). R.G. knew that simple controls were essential for any one-man tractor and scraper.

31 A crawler in low gear can pull about 80% of its weight. His 23,000 lb. crawler could only pull a 5,000 lb. full-drag scraper (cf. note 38) with 6,000 lbs. of dirt. 11,000 lbs. is only pulling 40% of the tractor’s weight. R.G. perceived that the fundamental problem was with the scraper’s design, not the tractor.
R.G. Electrified Scrapers of Schmeiser and Holt

[1] Ira Guy had an old Schmeiser scraper for rent [early 1920], and would let me pay off the rent in repair jobs for him [italics mine].

[2] Two weeks later [still in 1920, after he thought of electrifying the rented Schmeiser scraper], working nights with scant time out for eating or sleeping, I had the tractor rigged to generate electric power, and the scraper rigged to use it.

[5] . . . a big landlevelling contract at Bellota came through [Spring 1922]. At once I hurried over to the Guy brothers to rent the Holt scraper I had returned while pulling stumps [winter 1921–22]. To my dismay, they had already leased it to Buck Maistretti [Andrew Maestretti], one of my competitors. Worse, Buck had gone off with my electrical system still attached to the scraper [italics mine].

Some readers might dismiss the apparent discrepancy as a minor memory lapse as R.G. wrote forty years later. Not so, a 1945 article reconciles the seeming difficulty:

R.G.’s first effort to improve earthmoving tools was the installation of an electric motor on a Schmeizer [sic, should be Schmeiser] drag scraper in July ’20. Next year [1921] he put an electric motor on a Holt scraper. In ’22 he built a conventional drag scraper with a single electric motor to raise and lower the bowl as on a bulldozer.

32 Mover of Men and Mountains, 110.
33 Mover of Men and Mountains, 112.
34 Mover of Men and Mountains, 119. Mover of Men and Mountains, 117–18, mentions pulling stumps in the winter. California’s wet season is winter–spring. Clay must be leveled in the dry season. R.G. sought winter contracts in places with well-drained soils. Peat soil predominates in the San Joaquin-Sacramento delta, a triangle between Stockton, Sacramento, and Antioch. Adobe clay is what Stockton and Sacramento have. Grape and almond areas (e.g., Lodi and Manteca) are sandy. Knowing local soil-types and historic rainfall-figures assists in dating R.G.’s early small jobs (rarely appearing in newspapers). Norman B. Rohrer, The Remarkable Story of Mom LeTourneau (Wheaton, IL: Tyndale House, 1985), 53, says, “R.G. tried to get jobs working in sandy ground in the winter time and adobe soils in the summer. Winter’s moisture made the adobe impossible to maneuver with his tractor and graders.” Sandy areas put R.G. further from his wife and Stockton’s adobe, so she would certainly remember which jobs were in summer and which were in winter.

As background, compressed-air* controlled the cutting edge on Schmeiser Giant* scrapers, but each Holt scraper used ground-wheel drive in conjunction with a hand-wheel to move the blade. (Holt did not use compressed-air control). This confines R.G.’s accounts of electrifying an air-powered Schmeiser to 1920. He converted a Holt leveler a year later.

R.G. already had a two-scraper operation when he modified the Schmeiser. “We were leveling land for irrigation and it soon became apparent that one man was doing a better job [than the two-man scraper crew], and before long I had the boys quarreling over which one would get to run the one-man outfit.” It is true that R.G. first mentions buying a second tractor in 1923. Even so, he may have already rented a second tractor and scraper. This offers an insight: Good cash-flow required busy tractors. However, no one-man show could set grade-stakes, level land for fourteen-hour shifts, do repairs, design machines, build them, and bid on new jobs, so R.G. hired a few employees. Neither could one tractor generate sufficient revenue for wages, repairs, and buying steel for building new machines. The use of a second rented tractor (operated by close associates) is what gave R.G. time and money to build new equipment.

On January 24, 1920, R.G. bought a well-worn 1915 Holt 75.* He also rented a Schmeiser scraper, “Then a contractor with new equipment dumped an old 1915 Holt tractor on the market cheap, and the $600 went for a down payment. Ira Guy had an old Schmeiser scraper for rent, and would let me pay off the rent in repair jobs for him.” R.G. charged an hourly rate for various kinds of tractor work, including land leveling. Working each tractor fourteen hours per day would help cash-flow. Unfortunately, ranchers provided scraper-operators only for ten-hour shifts,* precluding fourteen-hour days—dawn to dusk.

* A smaller Schmeiser scraper (lacking air power) appears in Mover of Men and Mountains, first picture page after p. 122. For an air-powered Schmeiser, cf. Gowenlock, LeTourneau Legend, 1.

* Allhands, Tools of the Earth Mover, 123, describes Schmeiser’s most popular models, “Giant leveler, twelve feet, $1,450 at factory, weight 5000 pounds, and a capacity of between 4 and 4½ cubic yards. Junior leveler, ten foot, $1,275 at factory, capacity between 2 and 3½ cubic yards. Junior A leveler, $1,125 at factory, weight 3880 pounds, capacity 1 cubic yard.” Schmeiser scrapers used patent 1,150,459 (Applied for patent on March 9, 1914; awarded on August 17, 1915). The patent drawings depict a smaller machine, lacking air-power. Stockton’s soil conditions prevented R.G.’s tractor from moving more than three yards with a 4½ yard capacity Schmeiser Giant.

* See pictures mentioned in note 28. An article compiled from R.G.’s notes, “Power Transmission and Control,” NOW 3 (January 1, 1949): n.p., describes the Holt design: “Next stage brought a similar machine [to the air-operated Schmeiser] with a leather belt running from a live axle, keyed to the wheels, to a pulley shaft with gearing on it. Tightening the belt by hand would raise the blade, which could then be held up by a foot brake, and when released would go down by gravity. This system often lacked the power that was often necessary to force the blade into hard ground. To help (?) the operator, this rig was furnished with a large hand wheel, to augment the action of the belt. Two hands and two feet were not enough to deal with the wheel, brake and lever at the same time, and one had to be a contortionist to achieve success.” The “(?)” may be a proofreader’s note that ended up in print.

* Mover of Men and Mountains, 110. This tractor appears in Gowenlock, LeTourneau Legend, 2–5, but the scrapers pictured on those pages date from 1921–22.

* Mover of Men and Mountains, 111. Also R.G. LeTourneau, “Education Plus Experience Make the Successful Inventor,” NOW 9 (August 25, 1944): 5, “The company was glad to have the tractor work as many hours as possible, but was not willing to furnish a scraper man for the extra 3 or 4 hours of daylight.”

Eliminating the scraper operator was the only way to break the one-shift-per-day barrier. In 1920 R.G. electrified the Schmeiser scraper during two weeks of night work.44 Meanwhile, a pair of employees still moved dirt with the scraper on the day-shift. This preserved cash-flow, “. . . to be sure no loss of time would be caused by my new contraption—for dollars were scarce and loomed big in those days—I let the regular operator continue to control the scraper by compressed air during his shift.”45 Once electrified, the scraper leveled land from dawn to dusk.46 R.G. left the air controls intact during conversion, “The air cylinder and the [electric] motor were interchangeable, and after his operator had put in a day’s work with the former, he [R.G.] would switch over and put in his own time to test the efficiency of his new gear.”47

Unexpectedly, one tractor-and-scraper operator improved both quantities of dirt moved per hour and quality of leveling. Two reasons exist. First, a compressible medium (air power) no longer controlled the blade, so the cutting edge did not drift from its original setting.

I’m not bragging when I say the results were astonishing, because I was among those most astonished. I have mentioned that when compressed air pushed the blade into the ground, the blade bounced when it encountered a resistance greater than its air pressure. I had accepted the uneven surface left behind as the normal behavior pattern of scrapers. But my rack and pinion gears just didn’t have any bounce built into them. Whatever the blade hit, it cut through.48

Second, the tractor-operator did not need to second-guess the scraper-man’s strategy or vice versa: “. . . one man could do a better job alone than two men because often one [on the tractor] would be planning to do it one way and the other [on the scraper] would be planning a different way.” R.G. also says, “Synchronizing two minds was difficult, especially where they could communicate only by signs. In land leveling one has to see the humps and cut them off, see the hollows and fill them in, and for that one head is better than two.”49 R.G. could not persuade that rancher (probably: Roy Pike, El Solyo Ranch, Vernalis, CA)50 to change the contract, giving half the scraper-operator’s wages to him as a bonus.51 However, other ranchers gladly paid a premium hourly rate, because he required fewer hours to complete the work.52 Business seems to have gone well, because he also electrified another scraper (a Holt) the next year (1921).

44 Mover of Men and Mountains, 112.
45 LeTourneau, “Education Plus Experience,” 5. He also left the Holt scraper’s original controls intact in 1921. Mover of Men and Mountains, 119, gives this sequence: (1) Guy brothers leased the Holt leveler, (2) R.G. asked to rent it again, (3) but it was already rented, (4) they suggested that R.G. modify Maestretti’s tractor. Now, if the scraper would only work electrically, the Guy brothers would need to do step 4 before Maestretti would have rented it again (Step 1). Thus, R.G. left the original controls intact, when he electrified each machine.
46 Mover of Men and Mountains, 111, says that his desire to work from dawn to dusk prompted the change.
48 Mover of Men and Mountains, 112.
50 Roy Pike established El Solyo Ranch (taken from Spanish sollo, pronounced properly as soy-yō, meaning sturgeon or pike). He intended to name this impressive ranch after his last name retranslated into Spanish. R.G.’s statement probably refers to Pike, because LeTourneau, “Personal Data,” [1] speaks of electrifying the Schmeiser at El Solyo. Presumably, R.G. spoke to Mr. Pike, not a foreman, about contract terms.
51 Mover of Men and Mountains, 113.
52 Mover of Men and Mountains, 113–14, says that he raised his rate from $7.50 to $8.00 per hour.
LeTourneau’s Full-Drag Scraper

One day, R.G. stopped modifying other people’s scrapers. In May 1921 (after his contract for Carlton Case ended), R.G. bought property at 122 Moss Avenue in Stockton.53 A contract at Bellota required an extra scraper,54 but Ira Guy had already rented the Holt scraper R.G. had electrified.55 R.G. could not secure a scraper, so he and his brother-in-law, Ray Peterson, built the “full-drag” scraper in May or June 1921.56* Brazing (acetylene welding), rather than riveting, cut deadweight and increased payload.57 Tipping the blade transferred some payload onto the wheels, which also increased payload.58* (Vertical lines highlight the tipped blade).

Traditional Vertical Blade Orientation R.G.’s Tipped Blade

The Original Gondola (semi-drag)

53 Mover of Men and Mountains, 116–17.
54 Mover of Men and Mountains, 121.
55 Mover of Men and Mountains, 119. Maestretti is the proper spelling of his name.
57 Mover of Men and Mountains, 124, says that brazing cut Gondola’s weight (ditto for the full-drag scraper). “Thanks to its all-welded construction, it was freed at last of the massive cast iron frames used on other machines. When loaded, its weight was almost all pay load; when empty the tractor pulling it didn’t know it was there.” Raymond J. Sacks, Theory and Practice of Arc Welding (New York: Van Nostrand, 1943), 4–5, describes equipment that built the Alaska Highway. “This equipment had to meet several requirements. Irregularly shaped parts and movable members had to be immensely strong, yet light so that economical motive power could be employed. Relatively low first cost was important, but most important was the need for strength, rigidity and light weight.

“The design of an earth-moving unit, fabricated entirely by the welded method from ‘mill run’ steel plates and shapes, brought about a reduction in weight of the total earth-moving machine from 15% to 20% over the older conventional method of manufacturing. This was due to the fundamental reduction in weight made possible by the welded joint, which fuses the edges of the parts instead of the heavy reinforcing sections involved in the other common methods of joining such parts.”
58* LeTourneau, “New Machine Dramatizes,” 1, says, “So I built my first scraper [the full-drag] somewhat conventionally, but I tipped the blade backward considerably so I could carry about five yards instead of three…. .” Cf. Gowenlock, LeTourneau Legend, 2–3. Unfortunately, the caption in Orlemann, LeTourneau Earthmovers, 12, says, “Full-Drag Scraper,” since the dumped bowl resembles a full-drag. In all fairness, the print from which this picture derived had an old notation, “Full Drag Scraper,” on it.

(The following shows that it does not depict the full-drag). Cf. the picture “Original Gondola Dumping,” for identification of key locations (A–E) on it. An electric motor drives a cross-shaft (A) with pinion gears at each end. These pinions contact a pair of rack gears, raising and lowering the cutting edge. Another electric motor drives a winch (B) for dumping the bowl. The cable pulley is just below the highest point of the scraper. The cable attaches to the bowl (C). A full-drag scraper would not have a dumping mechanism, but only a way to hoist the blade. The cutting edge is raised (approximately 4”), so daylight and shadows appear under cutting edge (D). Two narrow steel uprights (E) rise to an angle-iron cross-beam. If the uprights were vertical, the bowl would be in the digging position. Instead, it is fully dumped. This is the Gondola, not the full-drag. Cf. Gowenlock, LeTourneau Legend, 2–5, to compare and contrast the full-drag with the Gondola.
Gondola is a controversial term (because more than one design went under that name).

1. Two distinct designs (1922 and 1927) received the designation Gondola.
2. The original 1922 Gondola no longer exists.
3. The 1922 Gondola was built before mid-June 1922, not during July (as R.G. asserts).

These assertions differ with conventional wisdom. Therefore, this paper documents these points heavily. In the interest of accuracy, the author gave an earlier draft of this paper to:

1. three of R.G.’s sons: Richard, Roy, and Ben LeTourneau,
2. Dale Hardy of the R.G. LeTourneau Heritage Center,
3. Harold Hahn, who arranged for LeTourneau University to receive both his Mountain Mover and Andrew Maestretti’s 1927 Gondola, and

The author has also spoken with these people after giving them the paper arguing that the Gondola at LeTourneau University is a 1927 Gondola. They have not objected to his conclusions. The author accepts final responsibility for embracing this view.

Of course, not everyone accepts the idea of a 1927 Gondola. One difficulty is that some pertinent passages in Mover of Men and Mountains are subject to alternate interpretations.

The Supposition that Only One Gondola ever Existed.

Many believe that R.G.’s 1922 Gondola was his only Gondola. This view derives from the fact that Andrew Maestretti, the same man who donated a Gondola about fifty years later to LeTourneau University, is who bought the 1922 Gondola a few years after it was built.

Buck Maistretti [Andrew Maestretti] came around [1924–25]. He had had so much success with my electrical system on the tractor and scraper he had rented from the Guy brothers that now he wanted to buy his own equipment. . . . He wanted the Gondola, already work-tested.

This same Andrew Maestretti donated a “Gondola” to LeTourneau University in 1974, before dying in 1975.

The actual solution may initially seem unlikely, but the following provable assertions establish this view:

1. R.G. produced two distinct scraper models that went by the name Gondola,
2. Its brand was Kaiser (though R.G. designed it), so not mentioning it would be understandable.
3. Maestretti not only bought the 1922 Gondola, but at least two 1927 Gondola scrapers. Cf. note 62.

59 R.G.’s recall of events is remarkable, but primary evidence must be the final arbiter of meaning in secondary sources and in biographical reminiscences.

60 Mover of Men and Mountains, 133.

61 Known records do not call the donated machine Gondola. This Livermore-built scraper does not resemble R.G.’s Stockton-built machines (A convenient list of early Stockton scrapers appears in Gowenlock, LeTourneau Legend, 34. Some adjustments to the 1923–25 portion of that list may be advisable, but it is still a helpful list). People still identify it as the 1922 Gondola, because the same man who donated this machine bought the 1922 Gondola. They surmise that it was so drastically modified that it no longer looks like R.G.’s design. The actual solution may initially seem unlikely, but the following provable assertions establish this view:

1. R.G. produced two distinct scraper models that went by the name Gondola,
2. Its brand was Kaiser (though R.G. designed it), so not mentioning it would be understandable.
3. Maestretti not only bought the 1922 Gondola, but at least two 1927 Gondola scrapers. Cf. note 62.
On the surface, the assumption seems safe, since few have heard of a Gondola scraper other than the one that LeTourneau built in 1922. For example, note the following statement which assumes that the machine at LeTourneau University is the 1922 Gondola,

Shortage of equipment in 1922 led R.G. LeTourneau to start building scrapers for his own use. After experimenting with a drag scraper, he built a pull-type on wheels with 6-yard capacity. Known as the “Gondola,” it was significant. . . .

The Gondola is preserved and is on display at LeTourneau University in Longview, Texas.\[1996 – 74 = 1922\].

Another author shows a picture of the 1922 Gondola. His 1996 book speaks of LeTourneau University possessing a seventy-four year old Gondola. Legion are those who equate the 1927 Gondola at LeTourneau University with R.G.’s original 1922 Gondola.

Long since retired and not easily recognized due to numerous re-builds, the Gondola is on display at LeTourneau University in Longview, Texas. The original lattice type frame has been replaced by a stronger draft frame and solid steel wheels have been fitted at some time during the machine’s 74 years in existence [written in 1996].\[\text{[w]}\]

The above citation observes that the 1922 picture does not resemble the scraper now at LeTourneau University.\[\text{*}\] If alleged rebuilding rendered the machine unrecognizable, very little remains of LeTourneau’s engineering. It is more significant for it to be a 1927 machine that displays R.G.’s engineering than to have a 1922 “LeTourneau” machine in which virtually nothing original remains. Fortunately, the University’s Gondola actually does embody LeTourneau’s ideas, because it is a 1927 LeTourneau design.

Establishing that Maestretti Also Purchased a 1927 Gondola.

In February 1927, R.G. entered a six-month employment contract with Henry Kaiser and sold his patents and factory equipment to him.\[\text{66}\]. In March, he built a factory at Kaiser’s Livermore, CA, location to make tracked-telescopic scrapers.\[\text{67}\]. After the contract ended, R.G.
restarted his own company. One journal reported in October 1928, “R. G. LeTourneau, of Stockton, is now putting some husky equipment for caterpillars on the market. Mr. LeTourneau completed his contract with the Kaiser Paving Company a year ago and has been back at the Stockton plant for the past year developing a line of heavy grading machinery.” R.G. still subcontracted for Kaiser and they remained friends. Selling his early patents to Kaiser yielded working capital, so he began bidding for larger contracts. As a result, R.G. needed a greater variety of machines and more of them. Both the construction and manufacturing ends of his business grew. In the mid-1930s (after Kaiser ceased building equipment), R.G. bought back the patents and re-introduced telescopic scrapers.

Meanwhile, a 1927 Kaiser job required a new scraper design. It would need (1) to load in a shorter distance than the telescopes and (2) to have wheels that tracked within the scraper’s cut. A June 1927 article hints at the new machine, “Practically all dirt moved was handled by the Kaiser-LeTourneau earth movers [at Colma, CA]. Only one of the electric earth movers remains, and it is expected a new type will be tried out there in the near future.” The new machine was LeTourneau’s first non-telescopic design since the 1922 Gondola. Appropriately, this non-telescopic machine received its forebear’s name: “The second unit [produced by Kaiser] is termed the ‘Gondola’ earth mover. This is a type of Fresno, non-telescoping, but capable of lifting eight tons of earth and delivering same...” Another 1927 journal mentions a Kaiser-LeTourneau Gondola, a LeTourneau-designed machine built in Kaiser’s factory, “Additional equipment is being prepared to ship to the job and the contract will soon be well under way with three Kaiser-LeTourneau earth movers, one Kaiser-LeTourneau electric blader, one Kaiser-LeTourneau electric scarifier, and one Kaiser-LeTourneau gondola.” The 1927 Gondola (containing no ideas covered by patents sold to Kaiser). Thus, after leaving Kaiser’s employ, the LeTourneau-designed 1927 Gondola served as R.G.’s starting point for his improved 1928 cable-controlled scraper.

73 Roy Fellom, “Kaiser Paving Company Operates Large Industry at Livermore,” Pacific Street and Road Builder 26? (June?/July? [1927]), 21. The photocopied article lacks both date and volume number. This is the June or July issue, because the plant was open seven weeks. Factory construction began in March 1927 (completed in early April?). “To Build Road Machinery,” Livermore [CA] Herald (March 11, 1927): 2, says, “The Kaiser Paving Company is preparing for a new activity at its Livermore plant, a building is being planned as a factory to build road machinery. The project is being moved here from Stockton, where the machinery is now being manufactured.”

75* Compare the cable-controlled scraper in Gowanlock, LeTourneau Legend, 16, with the 1927 Gondola at LeTourneau University. (Gowanlock, LeTourneau Archive, 2). The frame of the 1927 machine differed from R.G.’s earlier designs; the 1928 machine improved this new design. The two main innovations of the cable-controlled scraper over the 1927 Gondola were the patented cable control and an ejector (which dumped even sticky loads). Note that the 1928 cable-controlled scraper did not infringe any patents sold to Kaiser and that points where it resembles the 1927 Gondola were not patentable features.
The preceding establishes that two LeTourneau-designed models were designated *Gondola*. Did Andrew Maestretti ever buy a 1927 Gondola? Yes, Kaiser Paving Company sold a “Gondolo Scraper” (e.g., Gondola) to Andrew Maestretti on October 29, 1929.

Western Construction News shows Maestretti’s “LeTourneau” Gondola in 1930 (built in Livermore). It bears an uncanny resemblance to LeTourneau University’s Gondola. Close examination of the Gondola in Longview shows signs of post-manufacture enlargement and modification. Tractor-size increased dramatically in the 1930s, so contractors sometimes increased the capacity of their older scrapers to extend their useful life. The scraper that Andrew Maestretti donated to LeTourneau University was one of his (slightly enlarged) 1927 Gondola scrapers, not the 1922 Gondola. The 1922 and 1927 machines are quite distinct.

This is a sufficient case for dating the Gondola in 1927, but not the whole picture. Not only did R.G. design more than one Gondola, but the 1922 Gondola no longer exists. If so, the 1922 Gondola could not be at LeTourneau University. Before going into evidence that the 1922 machine no longer exists, please note what this would imply: The Mountain Mover (not the Gondola) would be the oldest surviving LeTourneau scraper.

Evidence that the 1922 Gondola No Longer Exists.

Six lines of evidence yield this conclusion. The first line is suggestive, but the others are more definitive. The sixth seems conclusive.

First. R.G. said something about the Mountain Mover in 1959 to prove that the Gondola was a good design. The form of his argument suggests that the Gondola no longer existed.

> When the prototype of the now famous Carryall was nearly completed [the Gondola], a man I knew [Damon Throop] who was building the best drag scraper then came along and looked my new machine over and said, “If it were different, I would say more power to you, but I built one just like it and I know it won’t work.” I might say that very scraper [the Gondola] moved hundreds of thousands of yards of dirt, probably millions, with only one man driving the tractor and operating the scraper. In fact, the next one I built a few months later [the Mountain Mover] is still in existence and has the original electric motors still on it in running shape.

> Why would he say, in effect, “The proof that the Gondola was a good design is that the Mountain Mover is still in operable condition?” The problem is that the success of the Mountain Mover (Experiment $x + 1$) does not prove that the Gondola (Experiment $x + 0$) was a success. Why would R.G. use the Mountain Mover’s thirty-seven-year existence as proof that the Gondola was a good machine? Why did he not speak of the Gondola’s thirty-seven-year existence? If it no longer existed, R.G. would have little choice. The best argument (in 1959)
against Mr. Throop’s assertion would be to point to the Mountain Mover as a surviving machine similar to the Gondola (which no longer existed).

Second. Medora Johnson, was the late Director of the San Joaquin County [California] Historical Museum, where one of R.G.’s 1925 tracked telescopic scrapers is on display. In her March 7, 1975, letter to Nels Stjernstrom, she refers to prior communication with him about various old LeTourneau scrapers,

> . . . we are assured that it [the machine at the San Joaquin County Historical Museum] was the first five slip telescopic scraper and therefore No. 3. *You have stated that No. 1 [Gondola] was scrapped*, and if you [LeTourneau University] have No. 2 [Mountain Mover], ours [the tracked telescopic] would be the third model in the succession of improvement [emphasis mine].

She wrongly identifies her museum’s telescopic scraper as immediate successor to the Mountain Mover (a three-year gap and intervening machines separate them). However, her statements are still important. She defines “No. 1” as the Gondola. If “No. 2” meant the Gondola, then “No. 1” would speak of the 1922 full-drag scraper. “Ours” would be the Mountain Mover. Rather, she identifies her museum’s machine as a “five slip telescopic” [the Mountain Mover was a “two slip telescopic.”] However, if “No. 2” is the Mountain Mover, then “ours” would be a five-bucket telescopic and “No. 1” would be the Gondola. This is her meaning.

Mrs. Johnson’s misidentification of her museum’s tracked telescopic as “No. 3” (rather than as “No. 5” or “No. 6”) is unfortunate. However, it does not affect the present argument. She did not claim first-hand knowledge of the Gondola’s fate, but credits Nels Stjernstrom for this information. Conceivably, R.G., Andrew Maestretti, or Harold Hahn told Stjernstrom about the Gondola’s demise.

Third. Lloyd Molby worked for LeTourneau before starting his own company. His firm, ATP Inc. (*Answer to Prayer*), restored the two old California-built scrapers displayed at LeTourneau University. One ATP Inc. status report says, “35. Restore R.G. LeTourneau 1922 model ‘Mountain Mover’ Scraper. In Process. (LeTourneau College Project).” The “Project

80 By itself, this argument is not airtight. However, it suggests R.G. knew that the Gondola no longer existed.

82 Medora Johnson, to Nels Stjernstrom, March 7, 1975.

83 Medora Johnson incorrectly inferred from *Mover of Men and Mountains*, 132, that her museum’s machine was the self-propelled scraper after being fitted with non-powered crawler tracks. She did not realize that R.G. built cable-operated five-bucket telescopics before building rack-and-pinion controlled five-bucket telescopics. His first patent application pertaining to a cable-operated five-bucket telescopic-scraper mechanism was on January 12, 1924 (for patent 1,530,779). He applied for a patent on the rack-and-pinion type of five-bucket telescopic scraper on December 25, 1925 (for patent 1,598,864). He seems to have built two machines on the first patent. The San Joaquin County Historical Museum’s scraper embodies the second of these patents. At least one intervening design and, probably, at least two intervening machines separate that machine from the Mountain Mover.

84 [Lloyd Molby], “ATP Projects,” [November(?)] 1974), 1–4, lists thirty-seven projects (apparently arranged chronologically, by starting date) for the first ten months of 1974. As the thirty-fifth of thirty-seven projects, the Mountain Mover project was apparently in the early stages.

Fourth. Not only did Harold Hahn arrange to transfer the Mountain Mover to the LeTourneau Foundation, but made arrangements on behalf of Andrew Maestretti. Harold is emphatic that Andrew Maestretti’s machine is more recent than the Mountain Mover and that more than one 1927 Gondola scraper existed. Photographic evidence verifies this. R.G. only built one 1922 Gondola, Kaiser built several 1927 Kaiser-LeTourneau Gondola scrapers. Maestretti owned more than one 1927 machine. Therefore, it is reasonable that he donated one of them to the University.

Fifth. Harley Murray, a long-time builder of heavy-equipment-hauling trailers and a contract heavy-hauler, dealt with LeTourneau in Stockton, CA. Murray transported the 20,000 pound Mountain Mover to various jobs for the Hahn family. Harley Murray labeled a photo of the Mountain Mover by calling it LeTourneau’s second scraper. He also says that a tunnel accident destroyed the first scraper. The fact that he calls the Mountain Mover the second scraper necessitates that he would call the Gondola the first. As a machinery mover, he would know of various heavy-hauling accidents in California’s Central Valley.

Sixth. Harley Murray, also gave testimony under a circumstance that ####

85 [Lloyd Molby], ATP Inc., “Project Backlog,” (November 1, 1974), [1]. Ten projects (2, 18–19, 23–24, 27, 32, 34–36) were ahead of the 1927 scraper. Also, Able, “Dirt Mover Located,” says, “. . . Molby says he is amazed at the vast strides in improving the machine [the 1927 Gondola versus the 1922 Mountain Mover].”

87 “Hahn interview,” July 19, 2004. Specifically, he recalled jobs on which “Andy” and “Smoke” Maestretti operated a pair of the 1927 Gondola scrapers.

88 Ben LeTourneau, R.G.’s youngest son, traveled to California around 1973, prior to LeTourneau University receiving the two California scrapers. Ben and others looked for old LeTourneau scrapers. His pictures show that at least two (or three) 1927 Gondolas then existed. Ben Walter LeTourneau, “[Color Picture of a 1927 Gondola],” [locale?], CA, developed July 1974; and Ben Walter LeTourneau, “[Color Picture of a 1927 Gondola with Cable Control and Apron],” [locale?], CA, developed July 1974. This supports note 90, that more than one was built.

89 Thurston Walker, “Mr. R. G.’s #2 Electric Scraper,” to Richard LeTourneau. September 24, 1969, [1], mentions the Mountain Mover’s weight and his discussions with Harley Murray about shipment to Texas. As a heavy-hauler who transported it around San Joaquin County, Harley Murray would know its weight.

91* [Harley Murray], “Annotated Photograph of Mountain Mover,” [no date]. Perhaps, other evidence will surface. It demise seems to be prior to 1959, because R.G., “New Logging Machine,” [1] mentioned the Mountain Mover (as still existing). Unless the Gondola no longer existed, the expectation is that he would mention it.

92 “Ancient History Anyone?” The Co-Operator (January–February 1966): 7, speaks of the destruction of three scrapers owned by Andrew Maestretti in a train wreck. One of the scrapers pictured is the same machine as the Gondola at LeTourneau University (apparent because of a crease on the box beam which matches a crease on the machine in Longview. It is evident that the writer conflated two stories. Harley Murray (note 83), as one who likely transported the Gondola (in addition to transporting the Mountain Mover), has greater credibility when he identifies the 1922 Gondola as the wrecked machine.
Summary. R.G. seems to imply that the 1922 Gondola no longer existed by 1959. Harley Murray, a Stockton heavy-hauler and manufacturer of heavy-hauling trailers, says that the Gondola was destroyed in a tunnel accident. This agrees with Nels Stjernstrom telling Medora Johnson that it was scrapped. Finally, Lloyd Molby reported that he restored a 1922 scraper (Mountain Mover) and a 1927 scraper (Gondola) for display at LeTourneau University.

Evidence links Andrew Maestretti with LeTourneau-designed Gondola scrapers of both 1922 and 1927. The LeTourneau University Gondola looks like Andrew Maestretti’s machine pictured in 1930. The original Gondola no longer exists. LeTourneau University has a 1927 LeTourneau-designed Gondola built in Kaiser’s Livermore plant.

The Original Gondola Was Built before June 1922

Preliminary Summary of the Chronological Problem. The dates advocated in this paper reflect the author’s approach to a problem contained within the following propositions. There does not seem to be any way to accept all seven propositions as they stand.

1. R.G. says that in 1922 he did not draw blueprints before building machines.
2. The Mountain Mover’s patent drawings reached the Patent Office on July 13, 1922.
3. Time needed for drafting the patent application, dates the Mountain Mover’s completion in late June.
4. R.G.’s small crew needed at least two weeks to build the Mountain Mover (start in mid-June).
5. Stockton’s first heat-wave in 1922 was the last half of June, with both early June and July being milder.
6. The Gondola started working at the fair prior to mid-June.
7. R.G. said that Damon Throop came “one scorchingly hot July day” and saw him finishing the Gondola.

The following section will show that a problem emerges in trying to fit R.G.’s assertion that Damon Throop came to the Moss Avenue shop on a scorchingly hot July day as the Gondola neared completion. Evidence will show that the Mountain Mover (a machine which followed the Gondola) was built during a heat wave in late June. Documentary evidence shows that the Gondola was completed prior to the June heat wave. This raises other questions: Did Mr. Throop come on a cooler day (when R.G. was building the Gondola)? Or did he come in the heat of late June while the Mountain Mover was under construction. The present author will argue that Mr. Throop came while it was cooler, as the Gondola was being built.

Analysis of Chronological Problems. Mover of Men and Mountains dates the completion of the original Gondola in July 1922, but a photo published on July 15, 1922, shows it working. This precludes a late-July date, but the best date for its completion is before June

93* Mover of Men and Mountains, 123, “The machine [the Gondola] was nearing completion when, one scorchingly hot July day, Mr. [Damon R.] Throop, a former designer and maker of scrapers, came out to see what I was doing.” Just for the record, Throop had designed various products for Schmeiser, before leaving that company. He applied in 1918 for patent 1,330,359, a large scraper, while working for Schmeiser in Davis, CA. He moved to Stockton, where he designed and built small scrapers for wheel tractors. He lived in Stockton, when he applied for patent 1,806,959 and when J.M. Conley assigned patent 1,438,362 to him (1922). A Fordson pulling a Throop leveler appears in H.C. Shaw Company’s ad in Stockton Daily Evening Record (June 24, 1922): 11. (Notes 93–95 show that Throop may have come on a cooler day (not a hot one) to see R.G. finishing the Gondola.

94* A picture of the Gondola appears in “Fair Building Program,” 13. The article says, “Two Caterpillar tractors and a scraper have been at work since the first part of June building up the new half-mile track, and part of the time there have been three tractors on the job. It will be completed in another week.” Notes 99–100, 102 (below) show that the job included more than the racetrack. R.G. subcontracted under Ira Guy’s contract (awarded May 24, 1922). A June 14 article speaks of three tractors working. R.G. may worked on this job from late May to late July.

1922.95 R.G.’s “Personal Data Sheet,” late-dates several events in this period,96 so precise dates require documentation beyond his recollections several decades later.

Newspaper accounts confirm what \textit{Mover of Men and Mountains} says about building the racetrack97 and exhibiting the Gondola at the fair.98 They also provide additional details. Ira Guy won an earthmoving contract at the San Joaquin County Fair on late May 24, 1922.99 Three tractors moved dirt on the project.100 The contract included building the half-mile horse-racing track.101 Three articles link LeTourneau to Ira Guy’s job. The first article pictures the Gondola, It says that three tractors have worked since early June.102 The second describes the Gondola.

The fair opened in late August, but LeTourneau, “Personal Data,” dates the job in September. His 1922 dates are less precise than for other years.

95 \textit{Mover of Men and Mountains}, 123, dates its completion in July 1922, but two items point to an earlier date: (1) A picture of the Gondola appears on July 15, 1922, in “Fair Building Program,” 13, in regard to various capital improvements at the fair (the horse racing track was one aspect of R.G.’s subcontract to Ira Guy’s earthmoving contract). Cf. also the August 26, 1922 article: “Exhibits of Implements,” 14, which mentions that LeTourneau exhibited it at the fair. (2) R.G. first applied for a patent on the Mountain Mover on July 13, 1922.

Perhaps, an unusually hot June seemed like July. The present author lived in Stockton from 1961–73. Occasionally, June can be as hot as July or August. 1922 was such a year. July 8, 1922, \textit{Stockton Daily Evening Record}, “Hot Weather Has Been Aid to Most Crops,” 11, says, “No serious damage was reported as a result of the warm weather the last half of June.” June had a heat wave. Mr. Throop may have visited R.G. while he built a scraper on a hot day. However, the heat wave occurred in June, during fabrication of the Mountain Mover.

Chronology for this part of 1922 is difficult. The Mountain Mover must have been built in late June. Specifically, R.G.’s first patent application was July 13, 1922. Mail from Stockton to Washington DC would take four days by train. The lawyer needed to ask R.G. about his idea, write up the patent in legal language, prepare drawings, and get R.G.’s witnessed signatures. Prior to seeing the lawyer, R.G. actually built the Mountain Mover. This seems to require a June completion. It seems that it much hotter when he built the Mountain Mover, than for the Gondola. Fresno records [similar to Stockton] show only one day from June 15th and 30th being less than 90°. About half of the days were 100° or higher, one was 110°, while the warmest day from June 7–14 was 82°. Late June 1922 interspersed days of July-like heat with less oppressive temperatures. R.G. linked the Gondola with a July heat-wave, but the Mountain Mover was built in the June heat, not the Gondola. Did Throop see the Mountain Mover on a hot day or see the Gondola a cooler one? Apparently, Throop came on a cooler day.

96 LeTourneau, “Personal Data,” [1], dates San Joaquin County fair’s racetrack job in September 1922. However, notes 94–95 (above) show that the Gondola worked before July 15, 1922. Furthermore, the fair opened in late August, so the racetrack grading did not extend into September. R.G.’s chronology errs here.

97 \textit{Mover of Men and Mountains}, 125.

98 \textit{Mover of Men and Mountains}, 37–38, 125.

99 Cf. note 9 (above)

100 The article, “Construction Started Today on Three Fair Ground Betterments,” \textit{Stockton Daily Evening Record} (June 14, 1922): 14, said nothing about putting a half-mile track inside the one-mile track, but mentions the existing track and three tractors, “For several days three tractors have been raising and leveling the site for the horse barns. In preparing the site it has been necessary to move about 10,000 yards of dirt. The site selected for the horse barns is the northwest corner of the 40-acre tract recently deeded to the association by the state and adjoins the southwest corner of the original fair grounds. The site is low, and each winter for a number of years has been covered with water for several weeks at a time. Striving to keep as much distance as possible between the barns and the fair grounds as possible, W. L. Douglas, manager of the county fair association, decided that by filling in a portion of this low area a splendid location for the buildings will be created. Subsequently, the three big tractors were set to work and today the site has been raised to a level equal to that of the race-track.”

101 “County Fair Scenes at Agricultural Park,” \textit{Stockton Daily Evening Record} (August 26, 1922): 14, The photo from an airplane “gives a birds eye view of the grounds and shows the new half mile track for running races within the mile oval.” Picture quality is poor, but it mentions the racetrack, the part of the contract discussed by
Two “75” Caterpillars, operated by Guy Brothers and R. G. Le Tourneau, are being used to haul the dirt. One of these tractors that has been recently invented and manufactured by Mr. Le Tourneau, and because of its radical departure from the old methods of operation is attracting a good deal of attention. It is claimed that there is no other scraper like it. The scraper blade is twelve feet long and five feet wide, and carries from eight to ten yards of dirt at one hauling. The driver operates the entire outfit from controls attached to the tractor. Two independently controlled motors are attached to the tractor, one for lowering the bucket and the other for dumping the dirt. They are controlled by a foot lever in front of the driver.

Mr. LeTourneau, formerly an automobile dealer of Stockton, has patented the scraper and expects to manufacture them. He has been using the electric controlled device for sometime and claims it is a great improvement over the old system.

The third article mentions R.G. exhibiting the scraper at the fair. It links the Gondola with preparing the ground for new fair buildings. This is important, because another article says that the contractor who erected those buildings started work on June 14, while Ira Guy and R.G. were still engaged in their project.

R.G. Le Tourneau, a local contractor, has his new type land leveler on display. The huge leveler was only recently designed by Mr. Le Tourneau and was first used to any great extent in leveling off the fair grounds preparatory to making the last building improvements.

The grounds this morning were teeming with activity. Three huge tractors were busy leveling the site for the barns and crews of men were busy preparing for the laying of the foundations of the [construction activity, which is not only confined to the new buildings, the race-horses quartered on the grounds were being worked out and the usual routine was under way.

... The contract for the bulk of the work has been awarded to Ubel and Vantil of Ripon and their crews began work this morning.

The Gondola leveled the site “preparatory to the last building improvements,” so it existed before June 14, when the builder started the foundation. One article cited above said that the Gondola “was only recently designed by Mr. Le Tourneau and was first used to any great extent in leveling off the fair grounds preparatory to making the last building improvements [emphasis mine].” The natural reading of “being first used to any great extent” is that R.G. used it on some

102 “This Year’s Fair Building Program Now Under Way,” Stockton Daily Evening Record (July 15, 1922), 13, “Two Caterpillar tractors and a scraper have been at work since the first part of June building up the new half-mile track....” Ira Guy won the contract in late May. He first graded for the horse barns, so the carpenters could complete their work on time. Work on the racetrack itself began in June.

103 If R.G. applied for a patent on the Gondola, the patent office did not grant it. July 13, 1922, marks his first successful patent application (for the Mountain Mover), so the reporter may mean that R.G.’s first patent application was in Percy Webster’s hands.

104 “Fair Grounds Busiest Place in Community,” Stockton Daily Evening Record (July 8, 1922), 11.

106 “Construction Started Today,” 14. Another article, “High Bids for Fair Buildings,” 14, establishes that the contract mentioned in the quote relates to new buildings, “The lowest of the five bids submitted was by Uhl and Van Tils of Ripon for $77,500. This was about $25,000 in excess of the architects’ estimate. The work promised includes horse barns, cattle barns, hog corrals, additions to the grandstand, levelling [sic] and grading, and new wire fences.” Although the bid includes leveling and grading, the same article (cited above in note 9) indicates that Ira Guy’s contract involved the heavy grading in preparation for the building contractor starting.
The Gondola probably was built no later than May 1922 (perhaps, Ira Guy based his bid, in part, upon knowing that the Gondola was quite efficient).

After discussing the scraper known as the Gondola, R.G. said, “the next one [the Mountain Mover] I built a few months later.”

Public records show that his first patent application on the Mountain Mover reached the patent office on July 13, 1922. This suggests a date for the Gondola no later than May 1922. It was only after operating the Gondola for a few months that he perceived its shortcomings. That ultimately led to the telescoping Mountain Mover.

The issue of patents raises another chronological matter. R.G. says,

As has already been mentioned, it was as a free exhibitor at the fair [in August 1922] that I came in for the deflating remarks of Mr. Harris of the Harris Harvester Works.

Mr. Harris was right, of course, but before I could act on his well-meant remarks, I heard some comments that sent me off on another track.

Carlton Case [R.G.’s attorney], more than a little impressed by my demonstrations, suggested, “Better protect yourself with some patents on that machine. It might be worth something.”

From the citation, it appears that Mr. Harris critiqued the Gondola negatively before R.G. spoke with Carlton Case. However, R.G.’s first patent application on the Mountain Mover had already reached the patent office on July 13. Therefore, the conversation with Mr. Case necessarily occurred no less than two months before the discussion with Mr. Harris.

The timeline sets forth the chronology accepted by the present author. R.G.’s discussions with Damon Throop and Carlton Case occurred earlier than he remembered (four decades later).

<table>
<thead>
<tr>
<th>April? May?</th>
<th>Late June</th>
<th>After July 4</th>
<th>July 13</th>
<th>July 15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gondola built</td>
<td>Mountain Mover built</td>
<td>Mailed patent application</td>
<td>Application reached Patent office</td>
<td>Picture of Gondola working</td>
</tr>
</tbody>
</table>

The Gondola’s Design Advances

The Gondola’s primary advance was that dirt flowed from the cutting edge onto a large floor (which supports the load, making it a semi-drag scraper, not a full-drag scraper). R.G.

107 “New Logging Machine,” [1–2], 186. The present writer would be uncomfortable with any suggestion that the Gondola was built in 1921. R.G. recalls a few month gap between the Gondola and Mountain Mover, not a whole year. Furthermore, the Gondola was almost new when he used it at the fair, so it was a 1922 machine.

109 Carlton Case was LeTourneau’s contract attorney, but Percy Webster’s Stockton-based firm handled R.G.’s patents until the May 1, 1953, sale to Westinghouse (when Westinghouse retained Webster and R.G. secured a new patent attorney). Case’s advice that R.G. apply for a patent was not self-serving; Case was not a patent attorney.

110 Mover of Men and Mountains, 125. The U.S. Patent Office only retains the filing documents for rejected applications for two years. Thus, it is unclear whether R.G. applied for any patents on the Gondola. However, R.G.’s account of the talk with Carlton Case implies that it was prior to his first patent application. Since “Fair Grounds,” 11, indicates that R.G.’s first patent application was before July 8, 1922, the “demonstration” mentioned by Mover of Men and Mountains occurred before the fair opened. Thus, Case advised securing patents at least two months before R.G. spoke with George Harris of Harris Manufacturing Company. Mover of Men and Mountains, 125, makes it seem that both talks were at the county fair. The conversation with Case preceded the one with Harris.

111 Some Schmeiser scrapers had a small floor (cf. patent 1,150,459); others had no floor.
asserts that the Gondola pioneered the idea of large semi-drag scrapers, “I made the first large scraper with a carrying bottom in it. . . .” **112** Lifting the cutting edge lifted the load of dirt that was supported by the floor. (Semi means half). The Gondola’s semi-drag design **113** means that the wheels support much of the load. However, part of the load was still moved by leaving the cutting edge in contact with the earth while traveling to the discharge area. A semi-drag scraper is a cross between a full-drag and a carrying scraper. **114** Transferring weight to the wheels in the Gondola’s semi-drag design enabled moving six yards of dirt behind a Holt 75 in a higher gear than was possible with earlier scrapers. **115** It greatly increased hourly yardage.

However, R.G. soon saw a problem with the Gondola. Although its design enabled moving larger loads than ever before, the ease with which his tractor loaded and hauled the Gondola suggested the need to enlarge it. Unfortunately, the efficiency curve was against him. Minute yardage increases required major additions of tractive effort.

I wanted to double the size of my scraper, and it was already as big as it could get. It was a cumbersome 12 feet wide and carried eight tons. The first couple of tons could be scraped up easily. The next two tons had to force the first two up and back. The last ton had to force seven inert tons aside to make room for itself, but after that the loading could become difficult. It would take as much power to squeeze in one more ton as was needed to load the first eight. In short, I could pick up eight tons with 75 horsepower, but would need 150 horsepower to scrape up nine tons, all of which did not strike me as being very practical. **116**

R.G.’s application for patent 1,470,853 also describes this problem faced by conventional forms of the semi-drag scraper, such as the Gondola.

The scraping and carrying capacity of an ordinary scoop is governed by its width rather than its depth or fore and aft length, since the resistance of the dirt against being piled up and moved bodily backward as it is being scraped is so great as to cause a tractor to become stalled before a scoop of any great depth may be filled.

113 The easiest way to describe a semi-drag scraper is in contrast with a carryall. In 1932, R.G. built his first production carryall scrapers. Such scrapers have a front apron that (when closed) contacts the cutting edge. A closed apron keeps the whole load in the scraper, regardless of travel speed. By contrast, semi-drag scrapers attain maximum hourly yardage by dragging the full scraper’s cutting edge on the ground (as with a full-drag scraper). Although the semi-drag scraper can haul a larger payload, its travel speed is no faster than that of a full-drag scraper.

Later, he invented the Tournapull, because higher hauling speed raises efficiency. The Tournapull is a logical development for carryalls (which retain their loads at high speed), but makes no sense for a semi-drag design.

114 A carrying scraper has an apron that closes the front opening, so the bowl retains its load without dragging the cutting edge on the way to discharging the load.

115 *Mover of Men and Mountains*, 122–23, “Between and in front of the [Gondola’s] wheels I swung from the frame a scoop-shaped bucket 12 feet wide by four feet deep and four feet high. Loaded to capacity, it held six cubic yards.” Gowenlock, *LeTourneau Legend*, 4–5, shows the Gondola’s non-rectangular sides. *Mover of Men and Mountains*, 124, refers to part of its effective six-yard load resting in the bucket and dragging part in front, “Even when semi-dragging a six ton load [with the Gondola], my aging tractor could move along just twice as fast as when it was dragging a four-yard mass of tumbling earth. I could carry a third again as much per trip and make twice as many trips.”

116 *Mover of Men and Mountains*, 128.
This might of course be overcome by increasing the width of the scoop, or using a tractor having a horse-power sufficient to overcome any such resistance. To overly increase the width of the scoop, however not only makes an unwieldy device, but a very heavy one, since it must be heavily braced to prevent lateral sag. To use a tractor of size having reserve power sufficient to overcome the above noted dirt resistance[,] when necessary[,] necessitates an expenditure for such a machine which would not be warranted and would increase the cost of the land levelling [sic] operations to an excessive degree.\footnote{LeTourneau, patent 1,470,853, 1.}

Basically, the tractive effort required for the cutting edge shearing the dirt is a constant. However, the process of filling a deep and high scraper bowl from the bottom (where the cutting edge is) requires incoming material to displace previously loaded material.\footnote{Shearing effort is a one-to-one function of bowl-width. Unfortunately, twelve feet was the maximum transport width (\textit{Mover of Men and Mountains}, 128).} Entering dirt curls upward at the back of the bowl and falls on top of the incoming dirt (like a rolling snowball). Instead of snow, a growing dirt-ball rolls within the bowl (rolling on the incoming dirt). The Gondola’s bowl was too large for his Holt 75, so the dirt-ball eventually stopped rolling. The dirt-ball acted like a dam, stopping the flow of dirt into the bowl. That was R.G.’s problem.

Widening the scraper would allow his tractor to roll more yards into the bowl’s dirt-ball, but the Gondola’s 12’ width already created transport problems. Making the bowl taller or deeper (front to back) would not let him increase the yardage of the dirt-ball. Buying a new 4000 Series Holt 75 to replace his 1915 Holt 75 (60–75) would only help slightly. What a dilemma!

THE MOUNTAIN MOVER

R.G. hoped for a modest increase. Astonishingly, a way to double the payload came in a flash, “Curiously enough, while drinking out of one of those telescoping aluminum cups, I found what I was after. Remember how the sections nested one inside the other when the cup was collapsed? In that condition only the bottom section held water, but when the next section was raised it held twice as much.”\footnote{Mover of Men and Mountains, 128.}

R.G. no longer needed to contemplate making the scraper wider. The tractive requirements for loading the inner bucket resembled those for the Gondola. As it filled, the operator slid it rearward.\footnote{LeTourneau, “Patent 1,470,853,” 2. “After the inner scoop has received its full load, according to the judgment of the operator, the scoop is gradually drawn back as the machine continues its forward movement, allowing the incoming dirt to pile up against and ahead of the first load without having to forcibly push back or surmount the latter in order for it to be accommodated in the scoop.” Compare the patent drawings.} Then, he loaded the remaining (empty) bucket. Of course, the loaded Mountain Mover weighed more than the loaded Gondola, raising rolling resistance. Available tractive power, especially after R.G. bought his “brand new super-Holt,” a 4000 Series Holt 75,\footnote{An October 17, 2002, email from Eric C. Orlemann to John H. Niemelä, says that Holt only shipped one 75 in 1923. It is unclear whether R.G. bought a 1922 or a 1923 Holt 75. Gowenlock, \textit{LeTourneau Legend}, 6, pictures} was
more than adequate. Specifically, after filling the Mountain Mover’s buckets, he dragged four more yards to the discharge area with the cutting edge on the ground. The design was successful. The Mountain Mover surpassed the Gondola, a remarkable machine in its own right.

The total load able to be scraped at one operation is therefore nearly, if not fully, twice as great as could be successfully or economically scraped into a single scoop the size of the inner scoop used, which itself is as large as could be successfully or economically employed in the ordinary type of scraper.

The Mountain Mover embodies LeTourneau’s very first patents: 1,470,853 and 1,512,614, the first ones of 298. It is the oldest surviving LeTourneau scraper. The Mountain Mover embodies the key advances of all of his earlier scrapers, as well as some new ones:

1. Electric power (continuing an earlier LeTourneau advance),
2. Brazed (gas welding) construction (continuing an earlier LeTourneau advance),
3. Semi-drag design (continuing from the Gondola),
4. Telescopic scraper design (new feature covered by patent 1,470,853).

In addition, some features of the Mountain Mover continue in later machines:

1. Electric controlled scrapers (pre-1928 and post-1947; electric wheels after 1958).
2. Electric-arc welding superceded brazing,
3. The semi-drag design prevailed until 1932 (the year of apron-equipped carryalls).
4. Telescopic scrapers regularly appeared in the LeTourneau line, even in the 1960s.

The Mountain Mover was the next-to-the-last machine aimed narrowly at land leveling for irrigation. These ranches were on relatively flat land with few rocks. Both the tiller-wheeled Holt 75 and the Mountain Mover required a wide turning-radius, suited for preparing fields for irrigation. Road construction required a smaller turning radius. Furthermore, highway-construction soil-conditions included ripped rock, so later scrapers used strong box-beam frames.

122 LeTourneau, “Patent 1,470,853,” 1, “. . . there is no difficulty in hauling such a load when once scraped.”

123* Mover of Men and Mountains, 129, “When the upper [e.g., the inside] bucket was full and presenting an eight-ton resistance to taking on any more dirt, I released a catch. Back it rolled on oiled tracks, easily pushed to the rear by the dirt entering the bottom [e.g., the outer] bucket. In good going, with 16 tons in the buckets, I could still scrape another four tons ahead in the conventional manner [of using a full-drag scraper], giving me a load of 20 tons with very little spill.” The drawings for LeTourneau, Patent 1,512,614, depict steel plates (item 21) for retaining the dragged portion of the load. Figures 1 and 3 in those drawings show the side plates as independent of the bucket.

125 Robert H. Selby, “Appendix I,” in “Earthmovers in World War II: R. G. LeTourneau and His Machines” (Ph.D. dissertation: Case Western Reserve University, 1970), 418–26, lists 298 patents. His compilation differs slightly from serial-number-plate lists (which include a few patents that were licensed or purchased from other companies). Selby only lists those where R.G. was the patentee, co-patentee, or assignee.

126* The 1923 self-propelled scraper was the last of these machines with such a narrow market. Its frame was not suitable for road construction work. Cf. picture in Gowenlock, LeTourneau Legend, 8–9. A recent picture of the Mountain Mover appears in Orlemann, LeTourneau Earthmovers, 13.

127 Prior to 1960 the Mountain Mover gained a gooseneck hitch, increasing maneuverability. See note 18.
Some writers date the Mountain Mover in early 1923. However, such a date does not square with R.G.’s July 13, 1922, patent application. Fabrication preceded this date (when the application arrived at the U.S. Patent Office in Washington, DC). After fabrication, R.G. would have seen his patent attorney, who drew up the application and mailed it. Thus, the Mountain Mover must be dated in the latter part of June 1922.

Persons Involved in Building the Mountain Mover

R.G. LeTourneau was his firm’s chief engineer for almost fifty years. The company was quite small in 1922. The only documentable employees then were Eph Hahn and two brothers-in-law (Ray and Howard Peterson). R.G. was the main designer, but Ray assisted in design.

Historical Significance of the Mountain Mover

Mountain Mover is the oldest surviving LeTourneau machine. Its advances let it move more dirt than any existing scraper. Although the Mountain Mover never left the farm, R.G. started introducing new designs for heavy construction work. Succeeding machines applied features drawn from the Mountain Mover. R.G.’s accomplishments in heavy construction came, because he never rested on his laurels. Each new machine advanced over its predecessors. Although crawlers with scrapers travel much slower than dump trucks, one man could scrape, transport, and spread the dirt in thin layers (suitable for compaction).

Scrapers Versus Power Shovels. A power shovel operation required several dump trucks plus spreading equipment. Scraper popular came at the expense of small shovels. R.G.’s business soared, while Bucyrus-Erie (a premier power shovel manufacturer), exemplifies plummeting sales of power shovels. B-E’s manufacturing sales dropped from $19,894,000 (1929) to $3,239,000 (1933). Of course, the depression had cut deeply into orders for large stripping.

129 R.G. was 33 years old in the summer of 1922. Ray Peterson was 20, and Howard was 16. Ray and Howard joined R.G. in 1921 (*Mover of Men and Mountains*, 99–100, 118). Eph Hahn began around then. The employees set grade-stakes, operated equipment, and helped with equipment design, construction, and repair. In 1923, *Mover of Men and Mountains*, 133, he had a crew of about a dozen, “[R.G.,] Eph Hahn, Ray Peterson, and about nine others.” This crew operated, repaired, and built machines. The use of more than one tractor provided funds for designing and building new machines. R.G. credits Ray with direct involvement in designing equipment starting with the Gondola (*Mover of Men and Mountains*, 122). Harold Hahn, telephone interview by Dale Hardy, February 10, 2004, indicates that Eph Hahn did much of the brazing on the Mountain Mover (which he later bought). Howard Peterson (then age 16) was part of the team that built the Mountain Mover. He assisted Eph (who called him his “grease monkey”).

130 This assumes the validity of earlier proofs that the Gondola at LeTourneau University is a 1927 machine.

131 The Tournapull enhanced scrapers’ competitive edge against power shovels. Crawler tractors teamed with scrapers displaced many shovels, so the Tournapull represented an even greater threat.

shovels. Even though public works spending increased, manufacturers of small shovels saw that market evaporate. Even a major company like Bucyrus-Erie could not ignore LeTourneau’s small company. It established a New-Products Committee headed by three vice-presidents (William Bager, Dan Eells, and William Morison) and the General Sales Manager, Peter Birkhead. In turn, the committee appointed a sales engineer, W.K. Fawcett, as its executive secretary and field investigator. In 1934, just twelve years after the Mountain Mover, his report, “Heavy Earth Moving Equipment Such as Le Tourneau and Others,” showed that scrapers were hurting smaller shovel sales.

One of the Company’s West Coast customers had promised to buy a 1½ cu. yd. Bucyrus-Erie shovel, provided he was low bidder on a certain highway contract. When the award went to another, the Bucyrus-Erie representative attempted to sell the successful bidder a shovel for the job. The contractor was not interested. According to his calculations, the use of a 1½ cu. yd. shovel and auxiliary equipment (five trucks and a bulldozer) would have required a capital investment of $54,000, and the average cost for digging, transporting, and grading would have been 20.1 cents per cubic yard (including interest, depreciation, operation, and maintenance). By contrast, he estimated that he could accomplish the same work for 10.5 cents per cubic yard with a tractor-scraper combination costing only $12,500, a savings of 77 per cent in capital outlay and 48 per cent in net cost per yard of earth moved.

Bucyrus-Erie’s field representatives had been reporting similar experiences with increasing frequency and forcefulness, especially from the area west of the Rocky Mountains where a former garage operator and excavating contractor R. G. LeTourneau, of Stockton, California, was sweeping the market with a new “carry-all” scraper of his own design and manufacture.

Such was the demand for the new cost-saving devices that, even in 1934, a year of severe depression, Le Tourneau’s plant at Stockton was reported to be working twenty-four hours a day and to be so far behind in deliveries that management was hesitant to accept any further orders.

As a result Peter Birkhead traveled to Stockton to ask LeTourneau to license B-E to manufacture and sell his scrapers east of the Rockies. As Birkhead headed to California, LeTourneau announced plans to locate near Caterpillar, in Peoria, IL. Having failed to align with LeTourneau, B-E hired some California scraper men, R.W. Moon and T.R. Paulsen, in August 1935 to establish a tractor-equipment division. In 1936 Bucyrus-Erie signed an agreement with International Harvester. International dealers sold B-E dozers and scrapers as attachments for their tractors. Sales of the Tractor Equipment division went from $113,000 (1936) to $1,088,000 (1939). Such sales were 9% of the manufacturing sales volume for the whole

133 Williamson and Myers, Designed for Digging, 232.
134 Williamson and Myers, Designed for Digging, 345, n. 9 for chapter 20, “W.K. Fawcett, ‘Heavy Earth Moving Equipment (Such as Le Tourneau and Others)’ (May 29, 1934).” Thus far, the present author has not secured a copy of this report, though it was accessible to Williamson and Myers fifty years ago.
135 Williamson and Myers, Designed for Digging, 232.
136 Williamson and Myers, Designed for Digging, 232–33.
137 Williamson and Myers, Designed for Digging, 233–34.
company in 1939, cushioning the blow inflicted by scrapers against small power shovels. International bought this B-E division in May 1953.

The Cost-Effectiveness of Scrapers and Dozers forced old-line companies to build them. R.G. said, “But to get back to the weak confounding the mighty, in spite of my limited education, I became, with the help of the Lord, what is known in the heavy-duty equipment field as an industrialist. Among my competitors are such giants as Caterpillar, General Motors, International Harvester, Allis Chalmers, and some eight others [including (Clark) Michigan, M-R-S, Westinghouse Air Brake, and Wooldridge], all big corporations with high powered executive staffs and engineering departments.” Many of R.G.’s innovations became universal.

Scrapers had a dramatic impact upon the cost of excavation. Amazingly, the 1926–56 indices of highway bid prices shows that excavation costs per cubic yard of dirt was no higher in 1956 than it had been in 1926. Despite inflation, the average bid-price for excavating a mile of highway (standardized at 17,491 cu. yds. of common excavation). Amazingly, the Excavation Index for the fourth quarter of 1955 was 100% of 1926 levels (despite inflation). Thus, after factoring inflation, excavation costs actually decreased. Contrarily, the paving index was 162% and structures were 234% as high as 1926. Selby concludes, “... while the decline in all costs was a function of the Great Depression, excavation costs did not show a typical rise during the recovery period [whereas all other factors rose steeply during recovery times]. The continuing low cost of excavation was a function of technology, not economics [such as price deflation].”

Use of LeTourneau Equipment in World War II. Selby also draws an interesting conclusion from the fact that the same Army Corps of Engineers who supervised a number of civil works projects in the 1930s ordered construction equipment during World War II.

These great projects, although sponsored by the government were contracted by private construction firms. This fact makes it possible to reconcile the enormous amount of government building programs and the relatively small increase in equipment sales in this sector by the LeTourneau company. It was the civilian contractors who were, for the most part, purchasing LeTourneau machinery, and it was from them that the Engineers were learning about the new tools and methods. When the time came for massive government equipment purchases, the Engineers turned to the same manufacturers who had been successfully supplying the civilians.

The Engineers found that LeTourneau met their needs, as evidenced by their volume of purchases. “... Gen. Wheeler said that of $357,546,000 worth of equipment delivered to the

139 Williamson and Myers, Designed for Digging, “Appendix V–G: Bucyrus-Erie Shipments,” 366, indicates that Tractor Equipment contributed $1,088,000 out of $11,977,000 in manufacturing sales in 1939.
140 Williamson and Myers, Designed for Digging, 319.
141 Mover of Men and Mountains, 3. Caterpillar is the only one of these companies still building scrapers.
143 Selby, “Earthmovers in War,” 34.
144 Selby, “Earthmovers in War,” 150–51, refers to a chart (ibid., 116), in which 1935 LeTourneau sales to the government totaled $102,833. It increased to $382,820 by 1939. Both figures are about 5% of total sales ($2,004,595 in 1935; $7,731,324 in 1939).
Corps of Engineers up to V-J day, LeTourneau had furnished 75,000 pieces, including 8,648 scrapers, of a value of $102,000,000.146

Company records show that of the 75,000 pieces of equipment, 35,682 were Power Control Units, but that together both branches of the service [Army Engineers and Seabees] bought 15,159 dozers, 10,783 Carryall Scrapers, 1,947 cranes, 1,366 rooters, 1,735 sheep’s foot rollers, 2,169 Tournapulls, and 121 trailers for carrying heavy equipment. In dollars, the war-time total came to $99,000,000.147

R.G. says,

... it was our organization that built over fifty percent of the earthmoving equipment in combat. According to reports, what with the building of highways like the Alcan and the Ledo Road in Burma, the building of airports and artillery emplacements all over the world, and the plowing away of rubble in demolished cities, more earth had to be moved during World War II than during all the combined wars of history.148

Earthmoving has been a national priority both in war and in peace. LeTourneau’s ideas have allowed our country to undertake huge projects swiftly and economically. His company went from a shoestring operation to one that employed thousands, because it offered cost-effective ways of undertaking huge projects (both in wartime and in peace).

Mechanical Engineering Concepts Unique to the Mountain Mover

As a recap, the Mountain Mover embodies LeTourneau’s very first patents: 1,470,853 and 1,512,614. These are the first of his 298 patents.149

1. Electric power (continuing an earlier LeTourneau advance),

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|}
\hline
& 1. Caterpillar Tractors & 2. Other Crawler Tractors \\
\hline
\textbf{x} = \text{LeTourneau} & \textbf{y} = \text{LaPlant-Choate} & \textbf{z} = \text{Other Attachment Makers} \\
\hline
\end{tabular}
\end{table}

Now, LeTourneau made over 50\% of earthmoving equipment. The following describes this: \(x > (y + z)\). This was a function of production capacity and quality of products by both LeTourneau and Caterpillar. Performance was an essential element of Caterpillar-LeTourneau becoming the preferred combination.

146 “LeTourneau Band Welcomes Gen. Wheeler,” NOW 10 (November 2, 1945): 6. Wheeler’s speech was on October 25, 1945. Each tractor cost more than the earthmoving equipment attached to it. LeTourneau and LaPlant-Choate made attachments for Caterpillar tractors. Other manufacturers supplied attachments for International, Allis Chalmers, and Cletrac. \textit{Mover of Men and Mountains}, 3, says that LeTourneau built “over fifty percent of the earthmoving equipment in combat.” Earthmoving equipment here excludes the bare crawler tractor. It only refers to Tournapulls or attachments for tractors: dozers, scrapers, rooters, rollers, etc. Although the military bought attachments from other companies (e.g., Baker, Bucyrus-Erie, Gar Wood, Heil, LaPlant-Choate, and Wooldridge), the Caterpillar-plus-LeTourneau combination was particularly prominent.

147 Selby, “Earthmovers in War,” 416–17.

148 \textit{Mover of Men and Mountains}, 3.

149 See note 125 (above).
2. Single-man operation (continuing an earlier LeTourneau advance),
3. Brazed (gas welding) construction (continuing an earlier LeTourneau advance),
4. Semi-drag design (continuing from the Gondola),
5. Telescopic scraper design (new feature covered by patent 1,470,853).

In addition, some features of the Mountain Mover continue in later machines:

2. Electric-arc welding superceded brazing,
4. The semi-drag design prevailed until 1932 (the year of apron-equipped carryalls).
5. Telescopic scrapers regularly appeared in the LeTourneau line, even in the 1960s.

With the Mountain Mover, one man could move about four times as much dirt the same tractor as other contemporary scrapers (requiring two men). It was narrowly suited for agricultural earthmoving, it was the prototype for all large scrapers (of any brand). After the 1922 Mountain Mover, R.G. built one more machine aimed at leveling for irrigation, the 1923 Self-Propelled scraper. Soon, however, R.G. entered road construction. Such jobs required scrapers with greater maneuverability and stronger frames. Yes, one man with the Mountain Mover could move more dirt than two men on other scrapers. Yet, R.G. did not rest on his laurels.

Significance to the World and to Mechanical Engineering.

Any history of scrapers must consider California, the birthplace of the modern scraper. Both one-man scrapers and the crawler tractor originated there. Stockton was home to Holt and LeTourneau, San Leandro was Best’s hometown, and Fresno (home of the Fresno scraper). Holt and Best merged in 1925 to form Caterpillar tractor. An article in Western Construction said,

The scraper was definitely a Western development. In fact, the area marked off by Stockton, San Leandro, and Fresno, Calif., was the main cradle and suffered the sharpest birth pangs. The famous Fresno drag scraper got its start here and quickly spread throughout the country. . . .

A big reason why the West was the center of activity in scraper development was the need for machines to level land for irrigation in California’s Central Valley. . . . Highway and dam building added a powerful stimulant in the 1920’s and 30’s.150

The article’s first five (of six) pages briefly describe a series of key contributions of various western companies including LeTourneau.151 The final page devotes itself to: “A revolution named LeTourneau.”152 The final page quotes 1929–31 Western Construction News articles. A few excerpts show that R.G. always demanded performance, “Bob Mann, Holt’s office manager [in Stockton] in the 1920’s reported that ‘Bob used to come into the Holt factory complaining that our tractors weren’t rugged enough to take care of overloading. I would plead with him to go around such obstacles as stumps and stones now and then instead of charging like a bull at a red

151 Ibid., 41–45.
152 Ibid., 46.
The article also says, “Following is a quote from the April 1930 issue of Western Construction News, which would not seem out of date, if it appeared in the current issue [August 1963]: ‘... LeTourneau has specialized in the last few years in grading equipment of unusual size and type, and bid this contract at a very low price in order to demonstrate the efficiency and speed of his equipment—both of which he satisfactorily accomplished.’”

What was California like in the years before this man-in-a-hurry started moving dirt?

In the late 1800s, non-irrigated wheat was the Central Valley’s major crop. The Bonanza Wheat era created demand for combined harvesters. Holt Historian, Reynold Wik, says,

A time capsule found in an iron column in a Holt factory building constructed in 1899 reveals that Holt first produced 13 combines in 1886, 134 machines in 1892, 61 in 1896, and 128 in 1899 for a total of 1,072 combines before 1900. By 1900, the sales of combines by the Holt Manufacturing Company (including the companies Holt purchased in the 1890s) were greater than those of all competing firms, and by 1916 some 6,000 Holt combines harvested an estimated 90 percent of the grain on the Pacific Coast.

Although the Bonanza Wheat farms pioneered large-scale Central Valley agriculture, the aftermath hindered the expansion of irrigation. Specifically, large landowners could not afford irrigation works. Dry-land farming yielded low profits per acre, precluding capital improvements to their huge tracts. On the other hand, small landowners needed the higher profits per acre that irrigation would yield. Bonanza growers prevented irrigation canals from crossing their fields. (Dams are suited to hilly areas, while irrigable land is in the valleys. Thus, widespread irrigation could not occur without canals crossing wheat lands). Continuation of this wheat era would have hindered irrigation and development of efficient land leveling equipment.

The 1887 Wright Act changed the rules for forming irrigation districts and taxing those lands. Such districts (with authority to tax all lands within their borders) formed all over the state. More and more acres came under irrigation. The payment of irrigation taxes gave an

153 Ibid., 46.
154 Ibid., 46.
155 Reynold M. Wik, *Benjamin Holt: Tracks and Combines* (St. Joseph, MI: American Society of Agricultural Engineers, 1982), 15, describes the Glenn Ranch of Colusa County, CA, with 66,000 acres in wheat in 1880. During the Bonanza Wheat era a few landowners owned most California farmland. They could not afford irrigation works for such large tracts, so dry-land wheat predominated.
157 This is not the place to consider why these ranches failed. However, newly-formed irrigation districts raised taxes on some bonanza lands in level areas. As California’s wheat acreage decreased, steeply sloped areas of the Pacific Northwest attracted many grain growers. (Such steep fields will never be irrigated) As wheat moved north, the average size of California ranches decreased, the number of ranches increased, and irrigated acreage increased.
incentive to benefit from the tax (by irrigating). However, large landowners could not immediately afford irrigation canals and extensive land leveling for all of their lands, so they gradually put land under irrigation.

This monumental task brought large crawler tractors into service pulling the largest possible land levelers. The process of bringing fields under irrigation had started before R.G. entered the picture in 1919. He made several important advances in scraper-design prior to building the Mountain Mover. However, the Mountain Mover’s use of a telescopic semi-drag bucket enabled it to move more dirt than any earlier scraper (including those he had built). This scraper and those which followed enabled quicker and cheaper land leveling, which accelerated California’s change-over to irrigated land. Some 1930 testimonials to R.G.’s scrapers follow.

In various agricultural sections tributary to Stockton, notably Union Island and West Stanislaus Irrigation districts, a veritable transformation is taking place. Vast areas of comparatively unproductive land are being prepared for intensive farming by leveling and subsequent irrigation. Proper watering of big-money crops is made possible by quick, cheap and efficient land leveling.

“One of the main reasons more land has not been leveled for irrigation before,” points out Alfred Ferguson, who has 1100 acres of high-producing land on Clifton Court, “is because it is only very recently that power scrapers have been developed which were superior to mules and old type scrapers.

“With a Stockton-built machine, such as the seven-yard Le Tourneau scraper which I recently used in leveling 300 acres, it is possible to get grading work well and quickly done without the use of teams or much man labor.”

LeTourneau's Transition to Heavy Construction. He applied lessons of the Mountain Mover to a new field, heavy construction in 1926. His five-bucket tracked-telescopic scraper impressed Henry Kaiser and a California Division of Highways engineer. Publicity

COUNTY | ACRES IRRIGATED | PERCENTAGE INCREASE
<table>
<thead>
<tr>
<th>1909</th>
<th>1919</th>
<th>1929</th>
<th>1909 to 1919</th>
<th>1919 to 1929</th>
<th>1909 to 1929</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sacramento</td>
<td>53,683</td>
<td>72,960</td>
<td>98,667</td>
<td>36%</td>
<td>35%</td>
</tr>
<tr>
<td>San Joaquin</td>
<td>59,811</td>
<td>183,923</td>
<td>281,629</td>
<td>208%</td>
<td>53%</td>
</tr>
<tr>
<td>Stanislaus</td>
<td>84,015</td>
<td>197,249</td>
<td>241,712</td>
<td>135%</td>
<td>23%</td>
</tr>
<tr>
<td>Sutter</td>
<td>1,173</td>
<td>47,305</td>
<td>98,771</td>
<td>3,933%</td>
<td>109%</td>
</tr>
<tr>
<td>Subtotal</td>
<td>198,682</td>
<td>501,437</td>
<td>720,779</td>
<td>152%</td>
<td>44%</td>
</tr>
<tr>
<td>State</td>
<td>2,664,104</td>
<td>4,219,040</td>
<td>4,746,632</td>
<td>58%</td>
<td>13%</td>
</tr>
</tbody>
</table>

159 Such tractors became part of California agriculture, when Benjamin Holt first tested his experimental steam crawler near Stockton on November 24, 1904.

161 The telescopic design would not work with rivets. Brazing (and later welding) allowed superimposing telescopic buckets. Cf. Mover of Men and Mountains, 128. Of course, R.G.’s use of welding meant that his equipment testified to that process. The Mountain Mover’s impact goes far beyond the earthmoving industry itself.

162 Mover of Men and Mountains, 141ff.; Grafton, Peterson Tractor, 5. These accounts of their meeting differ slightly, but Kaiser saw that R.G.’s machines made dirt fly (Mover of Men and Mountains, 144–45). An earlier dam there failed (possibly because of frozen fill). Cf. Robert Colby, “Philbrook Dam: Where Giants Made History,”
generated by influential people, trade journals, and by R.G. successfully completing contracts generated much business. Large scrapers often worked more cheaply than fleets of dump trucks and power shovels. Low cost earthmoving encouraged public works spending, even before the Stock Market Crash. In the Depression great public works projects gave work to many newly unemployed workers. The new 1930 Stockton factory (expanded in 1934) enabled LeTourneau to meet the demand. Factories opened in Peoria, IL (1935) and Toccoa, GA (1938). These plants filled initial orders for earthmoving equipment needed in war. Two other factories were needed during the war (Vicksburg, MS; and Rydalmere, Australia). The same types of equipment worked on such projects as the Interstate Highway System.

The Mountain Mover introduced efficiencies that not only worked in California’s irrigated farmland, but applied to public works, the military in World War II, and post-war expansion. Efficient scrapers helped keep 1956 earthmoving prices at 1926 levels, while other aspects of construction saw major price-inflation. Economical earthmoving has encouraged great improvements in the infrastructure for close to a century. An efficient infrastructure is essential to the modern economy. Although earthmoving may seem mundane, the Mountain Mover’s descendants have indeed shaped the modern world (pardon the pun).

100-Word Summary of the Mountain Mover’s Contribution.

Mountain Mover, the oldest surviving LeTourneau scraper, underlies his later scrapers and all others. Its telescopic bowl (a LeTourneau exclusive) minimized loading effort, doubling payload without widening the machine. Wheel-supported payload enabled enlarged scrapers. Brazing (gas welding) lessened deadweight. Electricity let one operator do the work of two. The efficient Mountain Mover remained competitive over four decades. At retirement it still leveled fields efficiently. Later models of R.G.’s scrapers slashed earthmoving costs, replacing many power shovels. Scrapers converted many projects from expensive “wishful thinking” to practical and cost-effective. National defense and our infrastructure benefit from Mountain Mover’s descendants.

How Unique Is the Mountain Mover?

The Mountain Mover is the oldest surviving LeTourneau scraper. LeTourneau University’s 1927 Gondola is the third oldest. The San Joaquin County (California) Historical Museum has the second oldest surviving machine, a five-bucket telescopic scraper. (R.G. built two in the winter of 1925–26, selling the surviving one to Ernie Rider). The same museum also owns a Tales of the Paradise Ridge 42 (June 2001): 7. Curry Dam (the size of Philbrook) had taken him two seasons (September 1924–January 1926), so Kaiser needed to speed up the job. Cf. A. Kempkey, “The Gordon Valley Dam,” Western Construction News 2 (May 25, 1927): 49–51. Maintaining Philbrook’s fill over winter would be costly, because it is in snow country. Philbrook only took four months with four telescopics plus other equipment. The subtitle for “The Philbrook Earth-Fill Dam for the Pacific Gas & Electric Co,” Western Construction News 1 (January 10, 1927): 38, says, “By Concentration of all Equipment Possible, Contractor Completes Dam Before Winter Interrupts Work.” The article (ibid., 39), says, “One of the interesting features of this job is that the contractor used an unusual amount and variety of equipment, the total value of which (new) was over $150,000, whereas the contract amounted to only $220,000. The contractor put more equipment on this job ordinarily used in order to complete the same before winter and resuming work in the spring would have been excessive.”

163 “Unique Earth Mover,” 10.
164a Mover of Men and Mountains, 138. This was not his earliest version of five-bucket track-mounted telescopic scrapers. “Earthmoving from Rubbing to Rubber,” NOW 10 (December 14, 1945): 33, shows the earlier cable-operated version. Since R.G. mounted his first bulldozer in 1926 on a Best tractor (Mover of Men and Mountains, 139; pictured in Gowenlock, LeTourneau Legend, 12), the push-type telescopic scraper did a function
Highboy (a 1930 design) as does Ed Akin of Placerville, CA. Akin also owns two lowboy scrapers (1931 design). The Antique Mechanics Club at University of California Davis has Lorry Dunning’s Lowboy (serial number 43).

All these machines are significant, but the Mountain Mover pioneered the concept of a telescopic scraper. It was the prototype for what followed. Its claim to fame is not greater efficiency than later surviving LeTourneau machines of the 1920s and 1930s. Clearly, his later machines were better adapted to the needs of general contractors. Instead, the Mountain Mover’s contribution was to prove once-and-for-all the benefit of letting wheels carry payload, not just the weight of the machine. Welding allows eliminating unnecessary weight. Bowl design (in this case, a telescopic bowl) enabled loading more dirt for the same tractive effort. One man could operate both the tractor and the scraper. The Mountain Mover marked a departure from all competitive scrapers. In time, other scraper builders began implementing R.G.’s innovations.

Conclusion

It has truly been a privilege for this son of a Stockton, CA, dirt mover to honor another Stockton dirt mover—one who testified about Jesus Christ’s free gift of eternal life for everyone who believes in Christ. That testimony played an important role in both my father and me coming to believe in Christ for eternal life. Both R.G. and my parents are now with the Lord. I believe the Lord’s promise to resurrect all who believe that He guarantees eternal life to all believers and guarantees that He will resurrect them (John 11:25–27). In light of His guarantee, I know that all believers will be with Him for all eternity. Furthermore, as one whose life’s work is to study and teach the New Testament in the original Greek, I anticipate the day when Christ, my Savior, teaches me as I sit at His feet. It will also be a privilege to see my mother and my two favorite earthmoving contractors as well.

The author is working on a full-length book about R.G.’s California years. The working plan to integrate a history of his various construction jobs with the machines that he designed to resolve specific problems. The aim is to produce a tight chronology that is heavily documented and contains many pictures. Please contact the author at the address listed on page 1 of this paper.

BIBLIOGRAPHY

Books

*Caterpillar Tractor Company. Fifty Years on Tracks. Peoria, IL: Caterpillar Tractor, 1954.

that dozers later performed, filling deep ravines on the 1925 Valley Springs, CA, railroad job (cf. Mover of Men and Mountains, 138). Presumably, by reversing the yoke, he made it a towed scraper.

A picture of the latter scraper appears in Leffingwell, Caterpillar Dozers, 122.

Signed Journal Articles

Unsigned Journal Articles

166 The earliest complete issue known to the present author is November 1929. Issues of this journal do not give publication data (besides the journal’s name) after the front cover. Volume numbers are irregular. The article says the plant opened seven weeks earlier. Was it seven weeks before Fellom: (1) visited, (2) wrote, or (3) published?

167 *Western Construction News* used dual pagination in 1930. The “feature-articles” section (my characterization) used one system of page-numbering, while the “regular-columns” used another. This article is on pages 262–70 of “feature articles” plus page 46 of “regular columns.” Oddly, page 46 follows page 270.
*“Grandpappy Never Quit.” NOW 9 (October 20, 1944): 1, 4–5.

* “[Mountain Mover Arrives at LeTourneau University].” NOW 28 (October 1974): [1].

“New Equipment and Trade Notes.” Western Construction News 3 (October 25, 1928): 676.

*“Scrapers from ’22 to ’44.” NOW 8 (January 7, 1944): 4–5.

“Second LeTourneau Scraper Built is Winner in Oldest Scraper Contest!” LeTourneau Co-

Newspapers

Stockton [CA] Record. May 23–24; June 14, 24*; July 8, 15*; August 26, 1922; September 27, 1930.

Unpublished

Johnson, Medora, to Nels Stjernstrom, March 7, 1975.

[Molby, Lloyd], ATP Inc. “Project Backlog.” November 1, 1974. [1].

*[Murray, Harley]. Annotated photograph of Mountain Mover. [No date].

*[Mountain Mover in Pieces near ATP Building].” Four pictures: A–D. [About 1975].

“Original Gondola Dumping.” Undated picture of the 1922 Gondola.

Government Documents

168* The picture (showing the Mountain Mover working in California) has a June 1966 processing date. The question is whether this date is when the film was first processed or when additional prints were made. In other words, it indicates that the picture was not later than June 1966. The picture depicts it moving dirt, so the picture probably was taken prior to June 1966.

169 The attorney’s signature appears to say “Knowles.”

170 The attorney’s signature appears to say “G.H.”